If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2X-228=0
a = 1; b = 2; c = -228;
Δ = b2-4ac
Δ = 22-4·1·(-228)
Δ = 916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{916}=\sqrt{4*229}=\sqrt{4}*\sqrt{229}=2\sqrt{229}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{229}}{2*1}=\frac{-2-2\sqrt{229}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{229}}{2*1}=\frac{-2+2\sqrt{229}}{2} $
| 2x-48=x-10 | | 1/4+3/20+3/20+922,5=x | | 3(x-1)(x+2)=6x | | 4x/7=0 | | 3.7g+10=1.7g+16 | | 15(x-1)=x | | X²+6x+13=0 | | 5(2x-9)(2x-9)+13=418 | | 3-7(n+3)+n=-36 | | 8j+j+2=11 | | 0,5y=5,5(18-y) | | -3(4x-2)=-12-2 | | 6m+5=7m+8 | | x/11-1=-7 | | 12x+4=7x+6 | | 2h−h=9 | | 7+x/7=18 | | 5(2x-9)^2+13=418 | | 3x+12=-6x | | (x)=(400+20)(90-1x) | | 99=7(k+2)+1 | | 4w−7=21 | | -8(1+4x)=-7x-25-8x | | -4(b-72)=-52 | | 4-3x/5=3+7x/2 | | 2×+4y=28 | | 155-n=48 | | 3x-2+5x+10=180 | | x÷3=1 | | 8x+50=3x-10 | | y2+4=14 | | 32-2x=-24(2x+14) |